294 research outputs found

    The number of beams in IMRT - theoretical investigations and implications for single-arc IMRT

    Full text link
    The first purpose of this paper is to shed some new light on the old question of selecting the number of beams in intensity-modulated radiation therapy (IMRT). The second purpose is to illuminate the related issue of discrete static beam angles vs. rotational techniques, which has recently re-surfaced due to the advancement of volumetric arc therapy (VMAT). A specific objective is to find analytical expressions that allow one to address the points raised above. To make the problem mathematically tractable, it is assumed that the depth dose is flat and that the lateral dose profile can be approximated by polynomials, specifically Chebyshev polynomials of the first kind, of finite degree. The application of methods known from image reconstruction then allows one to answer the first question above as follows: The required number of beams is determined by the maximum degree of the polynomials used in the approximation of the beam profiles, which is a measure of the dose variability. There is nothing to be gained by using more beams. In realistic cases, in which the variability of the lateral dose profile is restricted in several ways, the required number of beams is of the order of 10 to 20. The consequence of delivering the beams with a `leaf sweep' technique during continuous rotation of the gantry, as in VMAT, is also derived in analytical form. The main effect is that the beams fan out, but the effect near the axis of rotation is small. This result can serve as a theoretical justification of VMAT. Overall the analytical derivations in this paper, albeit based on strong simplifications, provide new insights into, and a deeper understanding of, the beam angle problem in IMRT

    Beam Orientation Optimization for Intensity Modulated Radiation Therapy using Adaptive l1 Minimization

    Full text link
    Beam orientation optimization (BOO) is a key component in the process of IMRT treatment planning. It determines to what degree one can achieve a good treatment plan quality in the subsequent plan optimization process. In this paper, we have developed a BOO algorithm via adaptive l_1 minimization. Specifically, we introduce a sparsity energy function term into our model which contains weighting factors for each beam angle adaptively adjusted during the optimization process. Such an energy term favors small number of beam angles. By optimizing a total energy function containing a dosimetric term and the sparsity term, we are able to identify the unimportant beam angles and gradually remove them without largely sacrificing the dosimetric objective. In one typical prostate case, the convergence property of our algorithm, as well as the how the beam angles are selected during the optimization process, is demonstrated. Fluence map optimization (FMO) is then performed based on the optimized beam angles. The resulted plan quality is presented and found to be better than that obtained from unoptimized (equiangular) beam orientations. We have further systematically validated our algorithm in the contexts of 5-9 coplanar beams for 5 prostate cases and 1 head and neck case. For each case, the final FMO objective function value is used to compare the optimized beam orientations and the equiangular ones. It is found that, our BOO algorithm can lead to beam configurations which attain lower FMO objective function values than corresponding equiangular cases, indicating the effectiveness of our BOO algorithm.Comment: 19 pages, 2 tables, and 5 figure

    Optimal partial-arcs in VMAT treatment planning

    Full text link
    Purpose: To improve the delivery efficiency of VMAT by extending the recently published VMAT treatment planning algorithm vmerge to automatically generate optimal partial-arc plans. Methods and materials: A high-quality initial plan is created by solving a convex multicriteria optimization problem using 180 equi-spaced beams. This initial plan is used to form a set of dose constraints, and a set of partial-arc plans is created by searching the space of all possible partial-arc plans that satisfy these constraints. For each partial-arc, an iterative fluence map merging and sequencing algorithm (vmerge) is used to improve the delivery efficiency. Merging continues as long as the dose quality is maintained above a user-defined threshold. The final plan is selected as the partial arc with the lowest treatment time. The complete algorithm is called pmerge. Results: Partial-arc plans are created using pmerge for a lung, liver and prostate case, with final treatment times of 127, 245 and 147 seconds. Treatment times using full arcs with vmerge are 211, 357 and 178 seconds. Dose quality is maintained across the initial, vmerge, and pmerge plans to within 5% of the mean doses to the critical organs-at-risk and with target coverage above 98%. Additionally, we find that the angular distribution of fluence in the initial plans is predictive of the start and end angles of the optimal partial-arc. Conclusions: The pmerge algorithm is an extension to vmerge that automatically finds the partial-arc plan that minimizes the treatment time. VMAT delivery efficiency can be improved by employing partial-arcs without compromising dose quality. Partial arcs are most applicable to cases with non-centralized targets, where the time savings is greatest

    Algorithm and performance of a clinical IMRT beam-angle optimization system

    Full text link
    This paper describes the algorithm and examines the performance of an IMRT beam-angle optimization (BAO) system. In this algorithm successive sets of beam angles are selected from a set of predefined directions using a fast simulated annealing (FSA) algorithm. An IMRT beam-profile optimization is performed on each generated set of beams. The IMRT optimization is accelerated by using a fast dose calculation method that utilizes a precomputed dose kernel. A compact kernel is constructed for each of the predefined beams prior to starting the FSA algorithm. The IMRT optimizations during the BAO are then performed using these kernels in a fast dose calculation engine. This technique allows the IMRT optimization to be performed more than two orders of magnitude faster than a similar optimization that uses a convolution dose calculation engine.Comment: Final version that appeared in Phys. Med. Biol. 48 (2003) 3191-3212. Original EPS figures have been converted to PNG files due to size limi

    Optimal margin and edge-enhanced intensity maps in the presence of motion and uncertainty

    Get PDF
    In radiation therapy, intensity maps involving margins have long been used to counteract the effects of dose blurring arising from motion. More recently, intensity maps with increased intensity near the edge of the tumour (edge enhancements) have been studied to evaluate their ability to offset similar effects that affect tumour coverage. In this paper, we present a mathematical methodology to derive margin and edge-enhanced intensity maps that aim to provide tumour coverage while delivering minimum total dose. We show that if the tumour is at most about twice as large as the standard deviation of the blurring distribution, the optimal intensity map is a pure scaling increase of the static intensity map without any margins or edge enhancements. Otherwise, if the tumour size is roughly twice (or more) the standard deviation of motion, then margins and edge enhancements are preferred, and we present formulae to calculate the exact dimensions of these intensity maps. Furthermore, we extend our analysis to include scenarios where the parameters of the motion distribution are not known with certainty, but rather can take any value in some range. In these cases, we derive a similar threshold to determine the structure of an optimal margin intensity map.National Cancer Institute (U.S.) (grant R01-CA103904)National Cancer Institute (U.S.) (grant R01-CA118200)Natural Sciences and Engineering Research Council of Canada (NSERC)Siemens AktiengesellschaftMassachusetts Institute of Technology. Hugh Hampton Young Memorial Fund fellowshi

    Reconstruction from Radon projections and orthogonal expansion on a ball

    Full text link
    The relation between Radon transform and orthogonal expansions of a function on the unit ball in \RR^d is exploited. A compact formula for the partial sums of the expansion is given in terms of the Radon transform, which leads to algorithms for image reconstruction from Radon data. The relation between orthogonal expansion and the singular value decomposition of the Radon transform is also exploited.Comment: 15 page

    Labels direct infants’ attention to commonalities during novel category learning

    Get PDF
    Recent studies have provided evidence that labeling can influence the outcome of infants’ visual categorization. However, what exactly happens during learning remains unclear. Using eye-tracking, we examined infants’ attention to object parts during learning. Our analysis of looking behaviors during learning provide insights going beyond merely observing the learning outcome. Both labeling and non-labeling phrases facilitated category formation in 12-month-olds but not 8-month-olds (Experiment 1). Non-linguistic sounds did not produce this effect (Experiment 2). Detailed analyses of infants’ looking patterns during learning revealed that only infants who heard labels exhibited a rapid focus on the object part successive exemplars had in common. Although other linguistic stimuli may also be beneficial for learning, it is therefore concluded that labels have a unique impact on categorization
    • …
    corecore